
viscosity depending on the volume concentration of the suspended particles and the ratio of 
the viscosity of the particle material to that of the dispersion medium. 

Since the situation considered in this article is very little different from the Einstein 
case, the coefficient 15 in Eq. (22) holds for ~ < 0.02. The noticeable decrease of cross 
viscosity resulting from the addition of a dispersed phase to a viscoelastic liquid is well 
known and used in practice. 

For ~3 = 0 the equations of state (21)-(23) give the classical results of the mechanics 
of dilute suspensions of spherical particles with a dispersion medium which is a Newtonian 
liquid. 

It follows from the equations of state obtained that the addition of a dispersed phase 
with a small concentration to a Reiner-:Rivlin liquid leads to a decrease in the cross viscos- 
ity, i.e., to a decrease in its non-Newtonian properties. Actually, ~3ef can be written in 
the form 

~aef = ~[1 -- v(g)~], 

where ~(~) lies between 0.6 and 15. The maximum value of ~ corresponds to solid particles 
and the minimum value to gas bubbles. 
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TURBULENT FLOW OF CONCENTRATED UNSTABLE EMULSIONS IN PIPES 

V. F. Medvedev UDC 532.517.4:532.695 

Unstable emulsions occur in a number of important technological processes, such as 
liquid extraction in oil refining and intrapipe demulsification in petroleum production. The 
hydrodynamic behavior of unstable emulsions differs from that of single-phase liquids in the 
damping of turbulent fluctuations of the dispersion medium By drops of the dispersed phase 
which are larger than the internal scale of turbulent fluctuations [i~. The turbulent flow 
of dilute unstable emulsions is described in [2]. 

When the content ~ of the dispersed phase of the emulsion lies in the range of 0.5244 
8 40.741 (for 8 = 0.741 the phases of an unstable emulsion are inverted) the drops are 
closely packed, and shearing the emulsion requires an additional stress to deform them [3]: 

% = (0.t95 ~ -- 0A02)~/d, 0,524 ~ ~ ~ 0.741 

where a i s  the  i n t e r f a c i a l  t e n s i o n ,  and d i s  the  d iamete r  of the  drops of  the  emuls ion.  Thus, 
a c o n c e n t r a t e d  u n s t a b l e  emuls ion conforms to  the  Bingham model [4] ,  and the  equa t i on  of mot ion 
of concentrated emulsions in a pipe can be written in the form 

(~e + ~e~du/dy = T - -  To, % < ~ < r w" Cl~ 
du/dy = 0 ,  ~ ~ 

where u and T are, respectively, the velocity and shear stress at a distance y from the wall, 
T w is the wall shear stress, and ~e and ~ee are the dynamic and eddy viscosities of the emul- 
sion. It is shown in [5] that the dynamic viscosity of concentrated unstable emulsions can 
be determined in accordance with [6] as ~e = ~(i -- 8)-2.~, where ~x is the dynamic viscosity 
of the dispersion medium. 
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We extend the hypothesis [7, 8] on the scale for fluctuating velocities in the flow of 
Newtonian fluids to the turbulent flow of concentrated emulsions which exhibit non-Newtonian 
properties; i.e., we assume that the scale for fluctuating velocities in developed turbulence 
is the dynamic velocity corresponding to the shear stress at a given radius r:v,,, e = v~ (I -- 

1 2 " . " �9 . . . J ~ ~ v e  

y/r) / , wherev, e = ~TW--W--W--W--W--W--W--W--W~IS the dynamlcvelocity. The denslty of the emulsion Pe is given 
by the sum Pe = 0:(i -- ~) + P28, where Pl and P2 are, respectively, the densities of the 
dispersion medium and the dispersed phase. Then the eddy viscosity is found as in [2], taking 
account of the damping of turbulent fluctuations of the dispersion medium by drops of the dis- 
persed phase. 

By performing the integration of Eq. (i) in the same order as in [2], we obtain expres- 
sions for the drag coefficient of concentrated unstable emulsions %e. The are approximated 
to within 3% by the expressions 

)~e = 64/Be,e, Re,e~< 2320, (2) 

~e = 0.3i64 2800 < Re.e < t0 ~, 
(i + t,i25~) ~.0 25 ' ~o.~ 

where (i + 1.1258) takes account of the effect of the damping of turbulence; Re, e is the 
Reynolds number 

wDP e 
Re.e-- ~e(1 + ~_p_p ), 

where 

0, 0 < ~ < 0.524, 
? =  t ,  0 . 5 2 4 < ~ < 0 . 7 4 i ;  

P = ToD/PeW is the plasticity number, and w is the average flow velocity. Equations ~2) 
describe the flow of unstable emulsions in pipes over the whole range of variation of the 
dispersed phase content. 

The drag coefficient %e was determined experimentally for the turbulent flow of a con- 
centrated unstable emulsion of transformer oil in water in a pipe 39.4 mm in diameter at a 
temperature of 16 • I~ Unstable emulstions were obtained by the turbulent mixing of the 
liquids in a pipeline into which they were fed by forcing them out of tanks by compressed 
air. 

Figure 1 compares the measured values of %e with a graph of Eqs. (2) (line i) for an 
emulsion with a dispersed phase content 8 = 0.6; line 2 shows the variation of %e for pure 
liquid. It is clear that the drag coefficient is appreciably smaller for the flow of un- 
stable emulsions than for a pure liquid as a result of the damping of turbulent fluctuations 
of the dispersion medium by drops of the dispersed phase. 

i, 

2. 

. 

4. 

5. 

LITERATURE CITED 

V. G. Levich, Physicochemical Hydrodynamics [in Russian], Fizmatgiz, Moscow ~959). 
V. F. Medvedev and L. P. Medvedeva, "Turbulent flow of dilute emulsions," Zh. Prikl. 
Mekh. Tekh. Fiz., No. 3, 116 (1975). 
V. F. Medvedev, "Ultimate shear stress of emulsions," Inzh~-Fiz. Zh., 24, 715 (1972). 
E. C. Bingham, "An investigation of the laws of plastic flow," U.S. Bureau of Standard 
Bulletin 13 (1916), p. 309. 
V. F. Medvedev, "Laminar flow of concentrated emulsions," Ref. Nauch.-Tekh. Sb. VNIIOENG, 
ser. Transport i Khranenie Nefti i Nefteproduktov, No. 3, i0 ~975). 

780 



6. H.C. Brinkman, The viscosity of concentrated suspensions and solutions," J. Chem. 
Phys., 20, 571 (1952). 

7. M.D. Millionshchikov, Turbulent Flow in the Boundary Layer and in Tubes [in Russian], 
Nauka, Moscow (1969). 

8. M. D. Millionshchikov, "Turbulent flow in the boundary layer and in tubes," At. Energ., 
28 ,  207 (1970). 

NATURAL CONVECTION AND HEAT TRANSFER IN POROUS INTERLAYERS 

BETWEEN HORIZONTAL COAXIAL CYLINDERS 

V. A. Brailovskaya, G. B. Petrazhitskii, 
and V. I. Polezhaev 

UDC 536.25 

INTRODUCTION 

It is known that in finely dispersed porous materials with communicating pores filled 
with a liquid or gas, large-scale (with respect to the pore sizes) natural convection arises 
under specific conditions, which can have a significant effect on the heat-insulating proper- 
ties of these materials. Investigations of the average characteristics of the heat transfer 
through plane horizontal and vertical layers of porous material and a comparison of them with 
experimental data are performed in [1-4]. The effect of convection on heat transfer in 
porous annular interlayers, which are elements of many engineering constructions ~eat insula- 
tion of the volume contents of pipes, cables, and so on), is numerically investigated in this 
paper. Heat transfer in the annular interlayers of compression electric furnaces has Been 
investigated in [5, 6]. Investigations have been carried out in [7, 8] for homogeneous an- 
nular interlayers filled with a liquid or gas. 

w An annular interlayer of finely dispersed isotropic porous material is formed by 
two horixontal coaxial cylinders on whose outer and inner surface are maintained the constant 
temperatures T2 and T:, respectively. 

In order to calculate the flow field and heat transfer the convection equations are used 
in the Boussinesq approximation, and the surface-friction force is replaced by the equivalent 
volume drag force in accordance with Darcy's law [9]. For the steady-state convection mode 
this system has the form 

~ v / k  = - -  VP -4- pg~AT, C1.11 
div v = 0, p%(vv)T = %*v~T, 

where p i s  t he  d e n s i t y ,  B i s  t he  volume e x p a n s i o n  c o e f f i c i e n t ,  p i s  t h e  dynamic  v i s c o s i t y  c o -  
e f f i c i e n t ,  v i s  t he  v e l o c i t y ,  Cp i s  t he  s p e c i f i c  h e a t  o f  t h e  gas  o r  l i q u i d  f i l l i n g  t he  p o r e s ,  
X* i s  t h e  t h e r m a l  c o n d u c t i v i t y  o f  t he  p o r o u s  medium w i t h o u t  c o n v e c t i o n  t a k e n  i n t o  a c c o u n t ,  p 
i s  t h e  p r e s s u r e  d i f f e r e n c e  f rom t h e  s t a t i c  v a l u e ,  T i s  t h e  mean t e m p e r a t u r e  o f  t h e  medium, AT 
i s  t h e  d i f f e r e n c e  be tween  the  l o c a l  and some c h a r a c t e r i s t i c  t e m p e r a t u r e ,  and k i s  t h e  perme-  
a b i l i t y  c o e f f i c i e n t  o f  t he  p o r o u s  medium. 

D e t e r m i n i n g ,  as  u s u a l ,  t h e  s t r e a m  f u n c t i o n  ~ by t he  r e l a t i o n s h i p s  u = 35 /3y ,  and v = 
--3~/3x (u and v a r e  t h e  components  o f  t h e  v e l o c i t y  v on the  x and y axes )  and e l i m i n a t i n g  t h e  
p r e s s u r e  f rom the  e q u a t i o n s  o f  m o t i o n  C I . 1 ) ,  we w r i t e  down in  t h e  p o l a r  c o o r d i n a t e  s y s t e m  i n  
d i m e n s i b n l e s s  fo rm t h e  s y s t e m  o f  e q u a t i o n s  f o r  t he  s t r e a m  f u n c t i o n  and t h e  t e m p e r a t u r e  0 

025 l O $ ~ t  0~-$ _Ra,(o_~_cosq~ 1 ae sincp), 
Or z' q" 7 ~ J r ~ Oq~ 2 = r Oqf 

a~e t ae i a~e t ( 0 ,  08 o, ae) 
a~ ~ ~  + - 7 "  a--F 4- r.~ a+~ = 7 a+ Or Or ~'~ ' 

where Ra* = g~kp2cpAT/~% * is the Rayleigh 
Rayleigh criterion for a porous medium. 

r 

filtration number, which is the analogue of the 
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